首页> 外文期刊>Optical fiber technology >FPI and MZI combined high-sensitivity sensor based on PDMS microcavity
【24h】

FPI and MZI combined high-sensitivity sensor based on PDMS microcavity

机译:FPI and MZI combined high-sensitivity sensor based on PDMS microcavity

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, an optic-fiber temperature sensor is proposed with an innovative structure design and sensing theory combination. The structure design is consisted of classic SMSMS structure and a polydimethylsiloxane (PDMS) microcavity, which is formed by inserting single mode fibers (SMF) and multimode fibers (MMF) from both ends of a hollow core fiber (HCF) filled with uncured PDMS. By adjusting the length (L) of the cavity into proper value, the reflection temperature sensitivity reaches up to-567.86 pm/degrees C, and the transmission sensi-tivity reaches-120.69 pm/degrees C. Due to the presence of the PDMS microcavity, the reflection spectrum achieved highly sensitive temperature Fabry-Perot interferometer (FPI) sensor. Moreover, a Mach-Zehnder interferometer (MZI) temperature sensor also formed by monitoring the transmission spectrum, and its temperature sensitivity is elevated about 7 and 1.2 times compared with the pure splicing SMSMS and the splicing + PDMS coating structure. By deploying the PDMS microcavity, FPI sensor and MZI sensor were combined inside one device with significant temperature sensing performance, and these two combined sensors can cross-correct within the intersected detection range. With simple manufacture steps, higher temperature sensitivity and bigger sensing range are achieved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号