...
首页> 外文期刊>Engineering structures >Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches
【24h】

Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches

机译:Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches

获取原文
获取原文并翻译 | 示例
           

摘要

In avalanche engineering and hazard mapping, computing impact pressures exerted by avalanches on rigid structures has long been a difficult task that requires combining empirical equations, rules of thumb, engineering judgment and experience. Until the 1990s, well-documented avalanches were seldom, and the main source of information included back-analysis of damage to structures and scarce field measurements. By the 1990s, several field sites were equipped across Europe, and since then they have provided new insights into the physics of impact. The main problem has been the difficulty in interpreting and generalizing the results to propose sound methods for estimating impact pressure. Testing a wide range of flow conditions has also been difficult in the field. To go a step forward in the elaboration of new guidelines for computing avalanche forces, we developed a numerical code based on the Discrete Element Method (DEM), which made it possible to simulate how an avalanche interacts with a rigid obstacle and to study how impact pressure depends on obstacle shape and size, as well as the avalanche flow regime. We extracted pressure and velocity data from the Vallee de la Sionne database to validate the DEM code, calibrate the model parameters, and elaborate avalanche scenarios. We studied four avalanches scenarios related to distinct flow regimes of the avalanche's dense core. In these scenarios, snow cohesion and velocity were imposed at the upstream boundary of the computational domain. Building on earlier work, we generalized an empirical equation for computing impact pressure as a function of snow cohesion, velocity, flow regime, and structure shape and size. Various coefficients were defined and calibrated from our DEM data. Within the range of tested values, we found good agreement between estimated pressure and field data.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号