首页> 外文期刊>International journal of green energy >Numerical simulation and thermal stress analysis of direct internal reforming SOFCs
【24h】

Numerical simulation and thermal stress analysis of direct internal reforming SOFCs

机译:Numerical simulation and thermal stress analysis of direct internal reforming SOFCs

获取原文
获取原文并翻译 | 示例
           

摘要

ABSTRACT Hydrocarbon fuels such as CH4 can be converted into H2 and CO by direct internal reforming (DIR) processes within the anode of solid oxide fuel cells (SOFCs). DIR-SOFCs can reduce system complexity and capital cost due to the elimination of external reformers. However, the strong endothermic reforming reactions at the cell entrance may result in large thermal stress, leading to premature failure. In this study, a numerical simulation study was carried out to analyze the effect of operating conditions and cell structures on temperature, composition and thermal stress distributions in DIR-SOFCs. A two-dimensional axisymmetric model was developed by considering the coupling effects of the chemical/electrochemical reactions; transport processes of mass, charge, or heat; and thermal mechanical stress. The failure probability of the cell was estimated by stress distributions. Simulation results show that the increase of the steam-to-carbon ratio and operating voltage leads to higher thermal stresses and higher failure probability. The introduction of a metal supportive layer may release the thermal stress problem at severe DIR-SOFC operation conditions, which leads to a flatter temperature distribution and smaller failure probability compared to anode-supported SOFCs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号