首页> 外文期刊>IEEE Transactions on Information Theory >An Algorithmic Reduction Theory for Binary Codes: LLL and More
【24h】

An Algorithmic Reduction Theory for Binary Codes: LLL and More

机译:An Algorithmic Reduction Theory for Binary Codes: LLL and More

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, we propose an adaptation of the algorithmic reduction theory of lattices to binary codes. This includes the celebrated LLL algorithm (Lenstra, Lenstra, Lovasz, 1982), as well as adaptations of associated algorithms such as the Nearest Plane Algorithm of Babai (1986). Interestingly, the adaptation of LLL to binary codes can be interpreted as an algorithmic version of the bound of Griesmer (1960) on the minimal distance of a code. Using these algorithms, we demonstrate—both with a heuristic analysis and in practice—a small polynomial speed-up over the Information-Set Decoding algorithm of Lee and Brickell (1988) for random binary codes. This appears to be the first such speed-up that is not based on a time-memory trade-off. The above speed-up should be read as a very preliminary example of the potential of a reduction theory for codes, for example in cryptanalysis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号