首页> 外文期刊>Journal of hydrometeorology >Sea Breeze Geoengineering to Increase Rainfall over the Arabian Red Sea Coastal Plains
【24h】

Sea Breeze Geoengineering to Increase Rainfall over the Arabian Red Sea Coastal Plains

机译:Sea Breeze Geoengineering to Increase Rainfall over the Arabian Red Sea Coastal Plains

获取原文
获取原文并翻译 | 示例
           

摘要

The Red Sea (RS) has a high evaporation rate, exceeding 2 m of water per year. The water vapor is transported from the shorelines by sea breezes as far as 200 km landward. Relative humidity in the vicinity of the RS exceeds 80% in summer. Nevertheless, precipitation is scarce in most of the Arabian RS coastal plain. In this work we use the Weather Research and Forecasting (WRF) regional model to assess how deliberate changes (geoengineering) in the surface albedo or conversion of bare land to wide-leaf forests over a vast coastal plain region affect precipitation over the Arabian RS coast. Our simulations show that geoengineering of land surface characteristics perturbs coastal circulation; alters temperature, moisture, and momentum exchange between the land surface and atmosphere; and changes the breeze intensity, cloud cover, and eventually the amount of precipitation. We find that extended afforestation and increased surface albedo are not effective in triggering rainfall over the RS coastal plains. Conversely, decreasing surface albedo to 0.2, assuming installation of solar panels over the coastal plains, increases surface air temperature by 1-2 K, strengthens horizontal surface temperature differences between sea and land, intensifies breezes, increases water vapor mixing ratio in the boundary layer above 3 km by about 0.5 g kg21, enhances vertical mixing within the planetary boundary layer, and generates 1.5 Gt of extra rainwater, equivalent to the annual consumption of five million people. Thus, this form of regional land surface geoengineering, along with advanced methods of collection and underground storage of freshwater, provides a feasible solution to mitigation of the existing water crisis in the arid coastal regions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号