首页> 外文期刊>Journal of Applied Polymer Science >Poly(3-hexylthiophene) stabilized ultrafine nickel oxide nanoparticles as superior electrocatalyst for oxygen evolution reaction: Catalyst design through synergistic combination of pi-conjugated polymers and metal-based nanoparticles
【24h】

Poly(3-hexylthiophene) stabilized ultrafine nickel oxide nanoparticles as superior electrocatalyst for oxygen evolution reaction: Catalyst design through synergistic combination of pi-conjugated polymers and metal-based nanoparticles

机译:Poly(3-hexylthiophene) stabilized ultrafine nickel oxide nanoparticles as superior electrocatalyst for oxygen evolution reaction: Catalyst design through synergistic combination of pi-conjugated polymers and metal-based nanoparticles

获取原文
获取原文并翻译 | 示例
           

摘要

We report the synthesis and electrocatalytic activity of poly(3-hexylthiophene) stabilized nickel oxide nanoparticles (P3HT@NiO NPs). Employing semiconducting P3HT as a stabilizing agent produced well dispersed P3HT@NiO NPs with uniform size distribution (2.5 +/- 1.2 nm). For comparison, NiO NPs stabilized with the small molecule 3-hexylthiophene (3HT@NiO NPs) were also synthesized and characterized as reference material. The physiochemical properties of the developed hybrid P3HT@NiO were fully characterized using UV/Vis absorption spectroscopy, fluorescence spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activities of the developed semiconducting polymer-stabilized NPs were evaluated for the oxygen evolution reaction (OER) of water splitting. Our work reveals the electronic communication between P3HT and NiO NPs and demonstrates that P3HT@NiO NPs exhibit superior catalytic activity with an overpotential of 310 mV when compared to the reference 3HT@NiO NPs which exhibited an overpotential 560 mV. These results suggest that the heteroatom-containing pi-conjugated semiconducting polymers can be employed as electrocatalytic performance enhancing and stabilizing ligands for the synthesis of ultrafine metal-based NPs as efficient electrocatalytic platforms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号