首页> 外文期刊>Composite structures >Damage monitoring of carbon fibre reinforced polymer composites using acoustic emission technique and deep learning
【24h】

Damage monitoring of carbon fibre reinforced polymer composites using acoustic emission technique and deep learning

机译:Damage monitoring of carbon fibre reinforced polymer composites using acoustic emission technique and deep learning

获取原文
获取原文并翻译 | 示例
           

摘要

In this research work, a deep Convolutional Neural Network (CNN) was trained for image-based Acoustic Emission (AE) waveform classification. AE waveforms from different damage modes of Carbon Fibre Reinforced Polymer (CFRP) composites were used to train the CNN for online damage monitoring. Spectrograms of AE Waveforms from four different damage modes, matrix cracking, delamination, debonding, and fibre breakage, were obtained in their Mel scale and used as the training data and test data for the CNN. The overall prediction accuracy of the CNN is 97.9%, while the fibre breakage and delamination events were able to be predicted with 100% accuracy. Then this pre-trained CNN is used for online damage monitoring of mode I delamination test of CFRP specimens. AE waveforms generated during the mode I test are classified using the trained CNN and the results are analysed in terms of the classified AE descriptors. The classified AE descriptors proved to identify the occurrences of different damage modes, thereby validating the damage classification accuracy of the CNN.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号