首页> 外文期刊>Marine Biology: International Journal on Life in Oceans and Coastal Waters >Stay the course: maintenance of consistent orientation by commuting penguins both underwater and at the water surface
【24h】

Stay the course: maintenance of consistent orientation by commuting penguins both underwater and at the water surface

机译:Stay the course: maintenance of consistent orientation by commuting penguins both underwater and at the water surface

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Many marine vertebrates traverse more than hundreds of kilometres of the ocean. To efficiently achieve such long-distance movements, the ability to maintain orientation in a three-dimensional space is essential; however, it remains unevaluated in most species. In this study, we examined the bearing distributions of penguins undertaking long-distance foraging trips and compared their bearing consistency between underwater and at the water surface, as well as between night and day, to quantify their orientation ability. The subject species, king penguins, Aptenodytes patagonicus, from Possession Island, Crozet archipelago (46°25′S, 51°45′E; January to March 2011), showed high bearing consistency both during dives and at the water surface whilst commuting towards/from their main foraging area, the Antarctic polar front. Their bearing consistency was particularly high during and after shallow dives, irrespective of the time of day. Meanwhile, their bearings tended to vary during and after deep dives, particularly in the middle of the trip, probably owing to underwater foraging movements. However, the overall directions of deep dives during the commuting phases were similar to those of shallow dives and post-dive periods at the water surface. These findings indicate that king penguins employ compass mechanism(s) that are equivalently reliable both underwater and at the water surface, at any time of the day. This orientation ability appears to enable them to achieve long-distance trips under strong temporal constraints. Further studies on the fine-scale bearing distributions of other diving vertebrates are needed to better understand movement strategies in marine environments.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号