首页> 外文期刊>Nano letters >Topological Superconductivity Based on Antisymmetric Spin-Orbit Coupling
【24h】

Topological Superconductivity Based on Antisymmetric Spin-Orbit Coupling

机译:Topological Superconductivity Based on Antisymmetric Spin-Orbit Coupling

获取原文
获取原文并翻译 | 示例
           

摘要

Topological superconductivity (TSC) has drawn much attention for its fundamental interest and application in quantum computation. An outstanding challenge is the lack of intrinsic TSC materials with a p-wave pairing gap, which has led to the development of an effective p-wave theory of coupling s-wave gap with Rashba spin-orbit coupling (RSOC). However, the RSOC-strict mechanism and materials pose still both fundamental and practical limitations. Here, we generalize this theory to antisymmetric SOC (ASOC). Using k center dot p perturbation theory, we demonstrate that 2D crystals, with point groups of C2, C4, C6, C2v, C4v, C6v, D2, D4, D6, S4, or D2d, can all facilitate the desired ASOC. Remarkably, this enables us to discover 314 TSC candidates by screening 2D material databases, which are further confirmed by first-principles calculations of Majorana boundary modes and the topological invariant of the superconducting gap. Our work fundamentally enriches TSC theory and greatly expands the classes of TSC materials for experimental exploration.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号