首页> 外文期刊>International journal of computational methods >Development of an Unresolved CFD-DEM Method for Interaction Simulations Between Large Particles and Fluids
【24h】

Development of an Unresolved CFD-DEM Method for Interaction Simulations Between Large Particles and Fluids

机译:Development of an Unresolved CFD-DEM Method for Interaction Simulations Between Large Particles and Fluids

获取原文
获取原文并翻译 | 示例
           

摘要

In recent decades, growing efforts have been devoted to coupling the Computational Fluid Dynamics (CFD) and the Discrete Element Method (DEM), i.e., CFD-DEM coupling methods, to account for particle–fluid interactions. However, it remains a challenging task for the well-known Immersed Boundary Method (IBM) belonging to the resolved CFD-DEM methods to improve the computational efficiency of large particles occupying several fluid cells and to simulate the interactions between irregularly shaped particles and fluids. In this paper, we present a novel unresolved CFD-DEM method to achieve the end. The main idea of the presented method is to split a large particle into multiple small spherical particles without overlapping using the Bonded-Particle Method (BPM), and simulate the particle–fluid interactions based on each small particle in the context of an unresolved CFD-DEM method. We validate the accuracy and efficiency of the novel method by comparing our numerical results of spherical particles in viscous fluids with those calculated using the IBM and existing experimental data. The presented method is further applied to the irregular large particle–fluid interaction problems, and the numerical results demonstrate the capacity of our method in simulating the motions of nonspherical large particles in the fluid.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号