...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America. >Human disturbance increases trophic niche overlap in terrestrial carnivore communities
【24h】

Human disturbance increases trophic niche overlap in terrestrial carnivore communities

机译:Human disturbance increases trophic niche overlap in terrestrial carnivore communities

获取原文
获取原文并翻译 | 示例
           

摘要

Animal foraging and competition are defined by the partitioning of three primary niche axes: space, time, and resources. Human disturbance is rapidly altering the spatial and temporal niches of animals, but the impact of humans on resource consumption and partitioning-arguably the most important niche axis-is poorly understood. We assessed resource consumption and trophic niche partitioning as a function of human disturbance at the individual, population, and community levels using stable isotope analysis of 684 carnivores from seven communities in North America. We detected significant responses to human disturbance at all three levels of biological organization: individual carnivores consumed more human food subsidies in disturbed landscapes, leading to significant increases in trophic niche width and trophic niche overlap among species ranging from mesocarnivores to apex predators. Trophic niche partitioning is the primary mechanism regulating coexistence in many communities, and our results indicate that humans fundamentally alter resource niches and competitive interactions among terrestrial consumers. Among carnivores, niche overlap can trigger interspecific competition and intraguild predation, while the consumption of human foods significantly increases human-carnivore conflict. Our results suggest that human disturbances, especially in the form of food subsidies, may threaten carnivores by increasing the probability of both interspecific competition and human-carnivore conflict. Ultimately, these findings illustrate a potential decoupling of predator-prey dynamics, with impacts likely cascading to populations, communities, and ecosystems.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号