首页> 外文期刊>Nano letters >Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals
【24h】

Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals

机译:Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals

获取原文
获取原文并翻译 | 示例
           

摘要

Active modulation of the plasmonic response is at the forefront of today's research in nano-optics. For a fast and reversible modulation, external magnetic fields are among the most promising approaches. However, fundamental limitations of metals hamper the applicability of magnetoplasmonics in real-life active devices. While improved magnetic modulation is achievable using ferromagnetic or ferromagnetic-noble metal hybrid nanostructures, these suffer from severely broadened plasmonic response, ultimately decreasing their performance. Here we propose a paradigm shift in the choice of materials, demonstrating for the first time the outstanding magnetoplasmonic performance of transparent conductive oxide nanocrystals with plasmon resonance in the near-infrared. We report the highest magneto-optical response for a nonmagnetic plasmonic material employing F- and In-codoped CdO nanocrystals, due to the low carrier effective mass and the reduced plasmon line width. The performance of state-of-the-art ferromagnetic nanostructures in magnetoplasmonic refractometric sensing experiments are exceeded, challenging current best-in-class localized plasmon-based approaches.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号