首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient
【24h】

U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient

机译:U-Model-Based Adaptive Sliding Mode Control Using a Deep Deterministic Policy Gradient

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a U-model-based adaptive sliding mode control (SMC) using a deep deterministic policy gradient (DDPG) for uncertain nonlinear systems. The configuration of the proposed methodology consisted of a U-model framework and an SMC with a variable boundary layer. The U-model framework forms the outer feedback loop that adjusts the overall performance of the nonlinear system, while SMC serves as a robust dynamic inverter that cancels the nonlinearity of the original plant. Besides, to alleviate the chattering problem while maintaining the intrinsic advantages of SMC, a DDPG network is designed to adaptively tune the boundary and switching gain. From the control perspective, this controller combines the interpretability of the U-model and the robustness of the SMC. From the deep reinforcement learning (DRL) point of view, the DDPG calculates nearly optimal parameters for SMC based on current states and maximizes its favourable features while minimizing the unfavourable ones. The simulation results of the single-pendulum system are compared with those of a U-model-based SMC optimized by the particle swarm optimization (PSO) algorithm. The comparison, as well as model visualization, demonstrates the superiority of the proposed methodology.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号