首页> 外文期刊>iucrj >Sifting fluctuation scattering from microtextured samples
【24h】

Sifting fluctuation scattering from microtextured samples

机译:Sifting fluctuation scattering from microtextured samples

获取原文
获取原文并翻译 | 示例
           

摘要

The paper by Binns and coworkers in this issue of IUCrJ (Binns et al., 2022) contains a key finding for promoting the structural investigation of matter exhibiting complex order by fluctuation X-ray scattering methods (FXS). As a result of the deep and accurate theoretical analysis thereby exposed, substantiated by careful experiments, one of the strongest limits of the technique, its sensitivity to microstructure, has been overcome. A brief outline is in order. It is nowadays assumed that by X-ray diffraction we can determine the atomic structure of a crystal. Much of the structural information is destroyed when we have a large number of isotropically and homogeneously oriented crystals instead of a single one (as in a powder). The directional averaging means that the diffraction pattern is substantially 1D. If sharp Bragg peaks are the dominant feature of the pattern, they can be lifted in 3D momentum space and the structure can be solved as well, albeit with more difficulty and some limitations. For a powder with particles that are not (or are imperfectly) crystalline, we can reliably recover only the scalar pair correlation or pair distribution function (PDF) from the scattered intensity, but no higher correlations. So a complex deduction game must be played to translate interatomic distances – directly gleamed as sharp peaks of the PDF – into 3D geometry. Kam (1977) thought to exploit the then novel 2D detectors and add fluctuation X-ray scattering (FXS) into the frame. FXS is a minor component of the scattering from an ideally isotropic powder, arising from zero-average fluctuations of the orientation distribution of the constituent particles. Separating FXS after subtracting the powder signal (the constant-momentum average of the pattern) was shown to yield higher-level information, namely the pair-angle distribution function (PADF) (Martin, 2017), that includes threeand four-body correlations with distances and angles (cf. Fig. 1). Clearly, the exploitation of FXS to yield PADF brings us much closer to understanding structures of less-crystalline matter (e.g. liquid crystals and nanoparticles within or without self-organized supercrystals). The FXS signal is, however, weak and can only be extracted if we can subtract the baseline powder diffraction signal. This is straightforward with ideal powders.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号