首页> 外文期刊>Harmful Algae >Selection and characterization of plant-derived alkaloids with strong antialgal inhibition: growth inhibition selectivity and inhibitory mechanism
【24h】

Selection and characterization of plant-derived alkaloids with strong antialgal inhibition: growth inhibition selectivity and inhibitory mechanism

机译:Selection and characterization of plant-derived alkaloids with strong antialgal inhibition: growth inhibition selectivity and inhibitory mechanism

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, researches on microalgae inhibition with plant-derived active substances have attracted much attention. In this study, the inhibition of six plant-derived alkaloids (neferine, isoliensinine, linensinine, nuciferine, capsaicin, and hordenine) on bloom-forming cyanobacteria Microcystis aeruginosa were investigated. The results showed that neferine and nuciferine had stronger inhibition on the growth of M. aeruginosa compared with the other four alkaloids, and the relative inhibition rate reached 91.27 and 88.70 at the concentration of 4.5 mg/L after 7 d of exposure, respectively. Different from neferine, nuciferine has no inhibition on Chlorella sp. and Tetradesmus obliquus. It also increased the diversity and species homogeneity of phytoplankton in the environmental water samples. Nuciferine decreased the contents of chlorophyll a and beta-carotene in M. aeruginosa with the extension of treatment time, which was 59.40 and 31.90 of the control at the concentration of 1.04 mg/L after 48 h, respectively. After 48 h of nuciferine exposure, the values of fluorescence parameters including maximum quantum yield (Fv/Fm), actual quantum yield of PSII (Yield), non-photochemical quenching (qN and NPQ), and electron transport rates (ETR) of M. aeruginosa cells were significantly decreased and photosynthetic capacity was weakened. The superoxide dismutase (SOD), catalase (CAT), ascorbic acid (ASA), and glutathione (GSH) in the cells were significantly reduced, and the hydrogen peroxide (H2O2) and malonaldehyde (MDA) contents continued to accumulate, causing severe oxidative damage. Therefore, the good biological safety and strong specific inhibition of nuciferine makes it have great application prospects in the inhibition of cyanobacteria blooms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号