...
首页> 外文期刊>Optical Engineering >Pulse evolution in a mode-locked erbium-doped fiber laser with a repetition rate of sub-megahertz
【24h】

Pulse evolution in a mode-locked erbium-doped fiber laser with a repetition rate of sub-megahertz

机译:Pulse evolution in a mode-locked erbium-doped fiber laser with a repetition rate of sub-megahertz

获取原文
获取原文并翻译 | 示例
           

摘要

Mode-locked erbium-doped fiber lasers (EDFL) with the low repetition rate and high pulse energy play an important role in many fields, such as micromechanical processing, ophthalmic surgery, biological sample detection, and LiDAR detection. However, in the 1550 nm band, due to the anomalous dispersion and nonlinear effects of erbium-doped fiber lasers (EDFLs), it is difficult to achieve mode-locked pulses especially in long cavities, which brings many difficulties to engineering applications. We analyze and simulate the pulse formation and evolution process in a mode-locked EDFL at a low repetition rate of sub-megahertz. The results show that by decreasing the gain or increasing modulation depth/saturation light intensity of saturable absorber in a specific range, a stable single-pulse mode-locked state can be achieved. Then a multipulse mode-locked state can be achieved by gradually increasing the gain or decreasing the saturation light intensity. In addition, the pulse width can be compressed by adjusting the second-order dispersion coefficient. The numerical simulation results are instructive for the design and development of EDFL at a low repetition rate of sub-megahertz.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号