首页> 外文期刊>Advanced functional materials >Glucose Detection Devices and Methods Based on Metal-Organic Frameworks and Related Materials
【24h】

Glucose Detection Devices and Methods Based on Metal-Organic Frameworks and Related Materials

机译:Glucose Detection Devices and Methods Based on Metal-Organic Frameworks and Related Materials

获取原文
获取原文并翻译 | 示例
           

摘要

Assessment of glucose concentration is important in the diagnosis and treatment of diabetes. Since the introduction of enzymatic glucose biosensors, scientific and technological advances in nanomaterials have led to the development of new generations of glucose sensors. This field has witnessed major developments over the last decade, as the novel nanomaterials are capable of efficiently catalyzing glucose directly (i.e., act as artificial enzymes, therefore defined nanozymes) or to entrap enzymes that are able to oxidize glucose. Among other nanomaterials, metal-organic frameworks (MOFs) have recently provided a tremendous basis to construct glucose sensing devices. MOFs are large porous crystalline compounds with versatile structural and tuneable chemical properties. In addition, they possess catalytic, peroxidase-like, and electrochemical redox activity. This review comprehensively summarizes the general characteristics of MOFs, their subtypes, and MOF composites, as well as MOF-derived materials employed to construct electrochemical, optical, transistor, and microfluidic devices for the detection of glucose. They include enzymatic, nonenzymatic, wearable, and flexible sensing devices and methods. The review also outlines the design and synthesis of MOFs and the working principles of the different transduction-based glucose sensors and highlights the current challenges and future perspectives.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号