...
首页> 外文期刊>Journal of hydroinformatics >Estimating extremely large amounts of missing precipitation data
【24h】

Estimating extremely large amounts of missing precipitation data

机译:Estimating extremely large amounts of missing precipitation data

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate estimation of missing daily precipitation data remains a difficult task. A wide variety of methods exists for infilling missing values, but the percentage of gaps is one of the main factors limiting their applicability. The present study compares three techniques for filling in large amounts of missing daily precipitation data: spatio-temporal kriging (STK), multiple imputation by chained equations through predictive mean matching (PMM), and the random forest (RF) machine learning algorithm. To our knowledge, this is the first time that extreme missingness (amp;90) has been considered. Different percentages of missing data and missing patterns are tested in a large dataset drawn from 112 rain gauges in the period 1975-2017. The results show that both STK and RF can handle extreme missingness, while PMM requires larger observed sample sizes. STK is the most robust method, suitable for chronological missing patterns. RF is efficient under random missing patterns. Model evaluation is usually based on performance and error measures. However, this study outlines the risk of just relying on these measures without checking for consistency. The RF algorithm overestimated daily precipitation outside the validation period in some cases due to the overdetection of rainy days under time-dependent missing patterns.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号