首页> 外文期刊>Journal of hydrometeorology >Do Model Results Vary under Different Routing Algorithms Based on a Distributed Ecohydrological Model?
【24h】

Do Model Results Vary under Different Routing Algorithms Based on a Distributed Ecohydrological Model?

机译:Do Model Results Vary under Different Routing Algorithms Based on a Distributed Ecohydrological Model?

获取原文
获取原文并翻译 | 示例
           

摘要

Although several flow routing (FR) algorithms are developed for hydrological modeling, it is still uncertain how the selection of algorithms may affect model results. This study aims to explore the similarity and dissimilarity in model results among different FR algorithms characterized by single flow direction (SD) and multiple flow direction (MD). The Coupled Hydro-Ecological Simulation System (CHESS) was incorporated with six different FR algorithms (D8, D infinity, MD infinity, MD8, MFD-md, and RMD infinity) and then applied for modeling ecohydrological processes for a semiarid mountainous watershed in the western United States during 1991-2012. Comparisons were made between the model results at the catchment and the grid scale. After slightly adjusting one of the most sensitive soil parameters, all algorithms behave similarly in simulating stream hydrographs. When averaged for the watershed, the modeled ecohydrological variables mostly do not differ significantly (5) cell-level differences in modeled soil moisture among different FR algorithms, with propagated influences on the simulated evapotranspiration and vegetation growth variables. In hillslopes, the cell-level differences in model results tend to increase significantly as the flows move to the streams. Overall, this study proves that the watershed-level differences in model results among FR algorithms are low after model calibration, while significant differences still occur at the cell level. Thus, observational data are essential for testing which routing algorithm captures better the reality of local ecohydrological processes. Significance StatementThe consideration of flow routing is essential for accurately simulating land surface ecohydrological processes. However, less is known about how the selection of flow routing algorithms may affect the model results. Based on model experiments, we found that the model results under different algorithms do not significantly differ from each other when averaged for the watershed. However, significant differences in model results exist at the individual cell level. These findings are useful for guiding future modeling-related research and also suggest the importance of field studies for testing which routing algorithm can better represent local ecohydrological processes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号