...
首页> 外文期刊>Drug testing and analysis >Detection time comparison of non‐hydrolysed sulphated metabolites of metenolone, mesterolone and 17α‐methyltestosterone analysed by four different mass spectrometric techniques
【24h】

Detection time comparison of non‐hydrolysed sulphated metabolites of metenolone, mesterolone and 17α‐methyltestosterone analysed by four different mass spectrometric techniques

机译:Detection time comparison of non‐hydrolysed sulphated metabolites of metenolone, mesterolone and 17α‐methyltestosterone analysed by four different mass spectrometric techniques

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The frequent detection of anabolic androgenic steroids (AAS) indicates their popularity among rule‐breaking athletes. The so called long‐term metabolites play a crucial role in their detection, and non‐hydrolysed sulphated metabolites have gained renewed interest, as research has demonstrated their extended detection time compared to the more conventional markers (e.g., for metenolone and mesterolone). Their potential has been investigated using liquid and gas chromatography–mass spectrometry (LC‐ and GC‐MS). However, due to their complementary nature, chances are that the most promising metabolite on one technique does not necessarily exhibit the same behaviour on the other and vice versa. Therefore, a comparison was carried out where as a trial model, metenolone, mesterolone and 17α‐methyltestosterone were selected and the most likely long‐term sulphated metabolites identified on four mass spectrometric instruments. Additionally, using a modified sample preparation procedure, comparison between conventional and non‐hydrolysed sulphated metabolites between different GC‐MS instruments was also included. When focusing on each individual marker, no cases were observed where a single metabolite provided a superior detection time on all instruments. Furthermore, for each AAS, there were incidences where a metabolite provided the best detection time on one instrument but could only be detected for a shorter period or not at all on other instruments. This demonstrates that metabolite detection windows and hence their added‐value as target substance are unique and dependent on the analytical technique and not only on their pharmacokinetic behaviour. Consequently, in each case, a metabolite versus instrument evaluation is needed to maximise the probabilities of detecting doping offences.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号