...
首页> 外文期刊>Environmental Science & Technology: ES&T >Highly Selective Reduction of Nitrate by Zero-Valent Aluminum (ZVAI) Ball-Milled Materials at Circumneutral pH: Important Role of Microgalvanic Cells for Depassivation of ZVAl and N2-Selectivity
【24h】

Highly Selective Reduction of Nitrate by Zero-Valent Aluminum (ZVAI) Ball-Milled Materials at Circumneutral pH: Important Role of Microgalvanic Cells for Depassivation of ZVAl and N2-Selectivity

机译:Highly Selective Reduction of Nitrate by Zero-Valent Aluminum (ZVAI) Ball-Milled Materials at Circumneutral pH: Important Role of Microgalvanic Cells for Depassivation of ZVAl and N2-Selectivity

获取原文
获取原文并翻译 | 示例
           

摘要

The passivation of zero-valent aluminum (ZVAl) limits its application in environmental remediation. Herein, a ternary composite material Al-Fe-AC is synthesized via a ballmilling treatment on a mixture of Al0, Fe0, and activated carbon and a nitrogen (N2)-selectivity of > 75. The mechanism study reveals that, in the initial stage, numerous Al//AC and Fe//AC microgalvanic cells in the Al-Fe-AC material could lead to a local alkaline environment in the vicinity of the AC cathodes. The local alkalinity depassivated the Al0 component and enabled its continuous dissolution in the subsequent second stage of reaction. The functioning of the AC cathode of the Al//AC microgalvanic cell is revealed as the primary reason accounting for the highly selective reduction of nitrate. The investigation on the mass ratio of raw materials manifested that an Al/Fe/AC mass ratio of 1:1:5 or 1:3:5 was preferable. The test in simulated groundwater suggested that the as-prepared Al-Fe-AC powder could be injected into aquifers to achieve a highly selective reduction of nitrate to nitrogen. This study provides a feasible method to develop high-performance ZVAl-based remedial materials that could work in a wider pH range.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号