首页> 外文期刊>Journal of Aerospace Engineering >Attitude Control of a Moving Mass-Actuated UAV Based on Deep Reinforcement Learning
【24h】

Attitude Control of a Moving Mass-Actuated UAV Based on Deep Reinforcement Learning

机译:Attitude Control of a Moving Mass-Actuated UAV Based on Deep Reinforcement Learning

获取原文
获取原文并翻译 | 示例
           

摘要

A moving mass-actuated unmanned aerial vehicle (MAUAV) is controlled by mass sliders installed inside the airframe and has the advantages of high aerodynamic efficiency and good stealth performance. However, designing a controller for it faces severe challenges due to the strong nonlinearity and coupling of its dynamics. To this end, we proposed an attitude controller based on deep reinforcement learning for the MAUAV. It directly maps the states to the needed deflection of the actuators and is an end-to-end controller. For the sparse reward problem, the reward function required for training is reasonably designed through reward shaping to hasten the algorithm's training speed. In training, random initialization and parameter perturbation are used to strengthen the final policy's robustness further. The simulation results tentatively demonstrate that the proposed controller is not only robust but suboptimal. Compared with an active disturbance rejection controller (ADRC) optimized by the particle swarm algorithm, our controller still guarantees a 100 success rate in multiple unlearned scenarios, meaning it has good generalization ability.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号