...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America. >Computational evidence for hierarchically structured reinforcement learning in humans
【24h】

Computational evidence for hierarchically structured reinforcement learning in humans

机译:Computational evidence for hierarchically structured reinforcement learning in humans

获取原文
获取原文并翻译 | 示例
           

摘要

Humans have the fascinating ability to achieve goals in a complex and constantly changing world, still surpassing modern machine learning algorithms in terms of flexibility and learning speed. It is generally accepted that a crucial factor for this ability is the use of abstract, hierarchical representations, which employ structure in the environment to guide learning and decision making. Nevertheless, how we create and use these hierarchical representations is poorly understood. This study presents evidence that human behavior can be characterized as hierarchical reinforcement learning (RL). We designed an experiment to test specific predictions of hierarchical RL using a series of subtasks in the realm of context-based learning and observed several behavioral markers of hierarchical RL, such as asymmetric switch costs between changes in higher-level versus lower-level features, faster learning in higher-valued compared to lower-valued contexts, and preference for higher-valued compared to lower-valued contexts. We replicated these results across three independent samples. We simulated three models-a classic RL, a hierarchical RL, and a hierarchical Bayesian model-and compared their behavior to human results. While the flat RL model captured some aspects of participants' sensitivity to outcome values, and the hierarchical Bayesian model captured some markers of transfer, only hierarchical RL accounted for all patterns observed in human behavior. This work shows that hierarchical RL, a biologically inspired and computationally simple algorithm, can capture human behavior in complex, hierarchical environments and opens the avenue for future research in this field.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号