首页> 外文期刊>The Journal of Chemical Physics >Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides
【24h】

Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides

机译:Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides

获取原文
获取原文并翻译 | 示例
           

摘要

A fully microscopic model of the doping-dependent exciton and trion linewidths in the absorption spectra of monolayer transition metal dichalcogenides in the low temperature and low-doping regime is explored. The approach is based on perturbation theory and avoids the use of phenomenological parameters. In the low-doping regime, we find that the trion linewidth is relatively insensitive to doping levels, while the exciton linewidth increases monotonically with doping. On the other hand, we argue that the trion linewidth shows a somewhat stronger temperature dependence. The magnitudes of the linewidths are likely to be masked by phonon scattering for T >= 20 K in encapsulated samples in the low-doping regime. We discuss the breakdown of perturbation theory, which should occur at relatively low-doping levels and low temperatures. Our work also paves the way toward understanding a variety of related scattering processes, including impact ionization and Auger scattering in clean 2D samples.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号