首页> 外文期刊>Reliability engineering & system safety >An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications
【24h】

An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications

机译:An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications

获取原文
获取原文并翻译 | 示例
           

摘要

Deep learning-based models, while highly effective for prognostics and health management, fail to reliably detect the data unknown in the training stage, referred to as out-of-distribution (OOD) data. This restricts their use in safety-critical assets, where unknowns may impose significant risks and cause serious consequences. To address this issue, we propose to leverage predictive uncertainty as a sign of trustworthiness that aids decision-makers in comprehending fault diagnostic results. A novel probabilistic Bayesian convolutional neural network (PBCNN) is presented to quantify predictive uncertainty instead of deterministic deep learning, so as to develop a trust-worthy fault diagnosis framework. Then, a predictive risk-aware strategy is proposed to guide the fault diagnosis model to make predictions within tolerable risk limits and otherwise to request the assistance of human experts. The proposed method is capable of not only achieving accurate results, but also improving the trustworthiness of deep learning-based fault diagnosis in safety-critical applications. The proposed framework is demonstrated by fault diagnosis of bearings using three types of OOD data. The results show that the proposed framework has high accuracy in handling a mix of irrelevant data, and also maintains good performance when dealing with a mix of sensor faults and unknown faults, respectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号