【24h】

Codes for Distributed Storage

机译:Codes for Distributed Storage

获取原文
           

摘要

In distributed data storage, information pertaining to a given data file is stored across multiple storage units or nodes in redundant fashion to protect against the principal concern, namely, the possibility of data loss arising from the failure of individual nodes. The simplest form of such protection is replication. The explosive growth in the amount of data generated on a daily basis brought up a second major concern, namely minimization of the overhead associated with such redundant storage. This concern led to the adoption by the storage industry of erasure-recovery codes such as Reed-Solomon (RS) codes and more generally, maximum distance separable codes, as these codes offer the lowest-possible storage overhead for a given level of reliability.In the setting of a large data center, where the amount of stored data can run into several exabytes, a third concern arises, namely the need for efficient recovery from a commonplace occurrence, the failure of a single storage unit. One measure of efficiency in node repair is how small one can make the amount of data download needed to repair a failed unit, termed the repair bandwidth. This was the subject of the seminal paper by Dimakis et al. 50 in which an entirely new class of codes called regenerating codes was introduced, that within a certain repair framework, had the minimum-possible repair bandwidth. A second measure relates to the number of helper nodes contacted for node repair, termed the repair degree. A low repair degree is desirable as this means that a smaller number of nodes are impacted by the failure of a given node. The landmark paper by Gopalan et al. 72 focuses on this second measure, leading to the development of the theory of locally recoverable codes. The two events also led to the creation of a third class of codes known as locally regenerating codes, where the aim is to simultaneously achieve reduced repair bandwidth and low repair degree. Research in a different direction led researchers to take a fresh look at the challenge of efficient RS-code repair, and led to the identification of improved repair schemes for RS codes that have significantly reduced repair bandwidth.This monograph introduces the reader to these different approaches towards efficient node repair and presents many of the fundamental bounds and code constructions that have since emerged. Several open problems are identified, and many of the sections have a notes subsection at the end that provides additional background.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号