首页> 外文期刊>Composite structures >Multi-objective optimization of composite sandwich panels using lamination parameters and spectral Chebyshev method
【24h】

Multi-objective optimization of composite sandwich panels using lamination parameters and spectral Chebyshev method

机译:Multi-objective optimization of composite sandwich panels using lamination parameters and spectral Chebyshev method

获取原文
获取原文并翻译 | 示例
           

摘要

Composite materials are widely used in various industries because of their distinct properties. Hybridization is an efficient way of designing composite panels to decrease the cost and/or weight while maintaining stiffness properties. In this study, an accurate and efficient framework is developed to optimize laminated sandwich panels composed of high-stiffness face sheets and low-stiffness core. The stiffness properties of face sheets and core are represented using lamination parameters. The governing equations are derived following first-order shear deformation theory and solved using the spectral Chebyshev approach. In multi-objective optimization problems, genetic algorithm is used to determine Pareto-optimal solutions for fundamental frequency, frequency gap, buckling load, and cost metrics. In these analyses, optimal lamination parameters and thickness are found for face-sheets and core of sandwich panels, and the results are presented as 2D and 3D Pareto-optimal design points. When the individual performance metrics lead to different optimum points, a scattering behavior is observed in the 3D Pareto sets whose boundaries are defined by the 2-objective Pareto fronts. The results provide insights into the design requirements for improving the dynamic and load-carrying behavior of sandwich laminates while minimizing the cost that presents the usability of the presented approach in the multi-objective optimization.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号