...
首页> 外文期刊>Aerospace science and technology >Graph neural networks for the prediction of aircraft surface pressure distributions
【24h】

Graph neural networks for the prediction of aircraft surface pressure distributions

机译:Graph neural networks for the prediction of aircraft surface pressure distributions

获取原文
获取原文并翻译 | 示例
           

摘要

Aircraft design requires a multitude of aerodynamic data and providing this solely based on high-quality methods such as computational fluid dynamics is prohibitive from a cost and time point of view. Deep learning methods have been proposed as surrogate models to predict aerodynamic quantities, showing great potential at significantly reduced cost. However, most approaches rely on a structured grid or are tested only for two-dimensional airfoil cases with a few thousand nodes. During aircraft programs, unstructured grids with millions of nodes are routinely used to model industrial-relevant complex physical systems. Hence, further investigation is required to study the applicability and extension of deep learning methods to industrial cases. In this paper, we use a graph neural network approach applicable to unstructured grids and extend it for the task of predicting surface pressure distributions for complex cases involving several hundreds of thousand of nodes. We compare this approach with proper orthogonal decomposition combined with an interpolation technique and with two other deep learning approaches, namely, a coordinate-based multilayer perceptron for pointwise predictions and its extension using surface normals as additional inputs. Results are first presented for a two-dimensional airfoil case and then for the NASA Common Research Model transport aircraft with an underlying mesh consisting of around 500. 000 surface points. The deep learning methods demonstrate in transonic flows the ability to capture shock location and strength more accurately. Furthermore, the proposed graph-based approach with the addition of more geometric information such as connectivity and surface normals seems to provide an additional boost in performance over the coordinate-based multilayer perceptron yielding more realistic pressure distributions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号