首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >An Application of Knowledge Engineering to Mathematics Curricula Organization and Formal Verification
【24h】

An Application of Knowledge Engineering to Mathematics Curricula Organization and Formal Verification

机译:An Application of Knowledge Engineering to Mathematics Curricula Organization and Formal Verification

获取原文
获取原文并翻译 | 示例
           

摘要

The authors present a theoretical proposal for the organization of mathematical contents, more precisely to curricula development formalization and formal verification, inspired by knowledge engineering techniques. The situation addressed is the following: the starting point is a mathematical "official curriculum" (or part of it), not necessarily completely detailed. In our proposal, a group of experts would have to first build a detailed formulation of this curriculum (including the "prerequisite" relation between contents), which we will denominate "preprocessed official curriculum." We detail how any "official curriculum development" could then be rigorously formalized and formally verified in a way inspired by rule-based expert system formal verification. We have defined the following terms: "contents soundness," "contents completeness," "relation soundness," "relation completeness," and "absence of cycles." We believe that this is a completely new formalization within mathematics teaching theory that, once computer is implemented, would be very helpful. That would be the case, for instance, in countries where government sets the "official curricula" for Primary and Secondary Education and textbook contents have to be manually checked and approved by academic authorities: evaluators would "only" have to extract the textbook contents and set the "prerequisite" relation among them and let the computer do the rest.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号