首页> 外文期刊>Journal of manufacturing processes >Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing
【24h】

Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing

机译:Neutron diffraction residual stress determinations in titanium aluminide component fabricated using the twin wire-arc additive manufacturing

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, twin wire-arc additive manufacturing (T-WAAM) technique has been considered as a promising method of fabricating and shaping titanium aluminide components with high efficiency and low cost. However, excessive thermal input of the non-consumable tungsten electrode arc deposition induces significant residual stresses in the buildup component, thus accurate measurement of residual stresses is necessary for T-WAAM buildup part quality assessment. In the present research, non-destructive neutron diffraction residual stresses measurements on as-fabricated and heat-treated T-WAAM produced Ti-48Al titanium aluminide components are performed. To exclude the influence of initial large T-WAAM residual stresses on d 0 hkl sample alignment, different d 0 hkl sample dimensions are designed: one is normal thin slice and the other is the meshed sample. According to the obtained results, the conducted post-production heat treatment has partially released initial residual stresses. Also, the meshed design of d 0 hkl sample shows better measurement accuracy than the simple sliced d 0 hkl sample. In addition, T-WAAM fabricated titanium aluminide wall component performs featured tensile-compressive alternating residual stress distribution induced by the layer-by-layer arc deposition.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号