...
首页> 外文期刊>Finite elements in analysis & design >Adaptive surrogates of crash worthiness models for multi-purpose engineering analyses accounting for uncertainty
【24h】

Adaptive surrogates of crash worthiness models for multi-purpose engineering analyses accounting for uncertainty

机译:Adaptive surrogates of crash worthiness models for multi-purpose engineering analyses accounting for uncertainty

获取原文
获取原文并翻译 | 示例
           

摘要

Uncertainty Quantification (UQ) is a booming discipline for complex computational models based on the analysis of robustness, reliability and credibility. UQ analysis for nonlinear crash models with high dimensional outputs presents important challenges. In crashworthiness, nonlinear structural behaviours with multiple hidden modes require expensive models (18 h for a single run). Surrogate models (metamodels) allow substituting the full order model, introducing a response surface for a reduced training set of numerical experiments. Moreover, uncertain input and large number of degrees of freedom result in high dimensional problems, which derives to a bottle neck that blocks the computational efficiency of the metamodels. Kernel Principal Component Analysis (kPCA) is a multidimensionality reduction technique for non-linear problems, with the advantage of capturing the most relevant information from the response and improving the efficiency of the metamodel. Aiming to compute the minimum number of samples with the full order model. The proposed methodology is tested with a practical industrial problem that arises from the automotive industry.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号