...
首页> 外文期刊>journal of cheminformatics >Extended study on atomic featurization in graph neural networks for molecular property prediction
【24h】

Extended study on atomic featurization in graph neural networks for molecular property prediction

机译:Extended study on atomic featurization in graph neural networks for molecular property prediction

获取原文
获取原文并翻译 | 示例
           

摘要

Graph neural networks have recently become a standard method for analyzing chemical compounds. In the field of molecular property prediction, the emphasis is now on designing new model architectures, and the importance of atom featurization is oftentimes belittled. When contrasting two graph neural networks, the use of different representations possibly leads to incorrect attribution of the results solely to the network architecture. To better understand this issue, we compare multiple atom representations by evaluating them on the prediction of free energy, solubility, and metabolic stability using graph convolutional networks. We discover that the choice of atom representation has a significant impact on model performance and that the optimal subset of features is task-specific. Additional experiments involving more sophisticated architectures, including graph transformers, support these findings. Moreover, we demonstrate that some commonly used atom features, such as the number of neighbors or the number of hydrogens, can be easily predicted using only information about bonds and atom type, yet their explicit inclusion in the representation has a positive impact on model performance. Finally, we explain the predictions of the best-performing models to better understand how they utilize the available atomic features.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号