首页> 外文期刊>Advanced functional materials >Electrochemical Control of Charge Current Flow in Nanoporous Graphene
【24h】

Electrochemical Control of Charge Current Flow in Nanoporous Graphene

机译:Electrochemical Control of Charge Current Flow in Nanoporous Graphene

获取原文
获取原文并翻译 | 示例
           

摘要

During the last decade, on-surface fabricated graphene nanoribbons (GNRs) have gathered enormous attention due to their semiconducting pi-conjugated nature and atomically precise structure. A significant breakthrough is the recent fabrication of nanoporous graphene (NPG) as a 2D array of laterally bonded GNRs. This covalent integration of GNRs could enable complex electronic functionality at the nanoscale; however, for that, it is crucial to externally control the electronic coupling between GNRs within NPGs, which, to date, has not been possible. Using quantum chemical calculations and large-scale transport simulations, this study demonstrates that such control is enabled in a newly designed quinone-NPG (q-NPG) thanks to its GNRs inter-connections based on electroactive para-benzoquinone units. As a result, the spatial distribution of injected currents in q-NPG may be tuned, with sub-nanometer precision, via the application of external electrostatic gates and electrochemical means. These results thus provide a fundamental strategy to design organic nanodevices with built-in externally tunable electronics and spintronics, which is key for future applications such as bio-chemical nanosensing and carbon nanoelectronics.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号