...
首页> 外文期刊>Electric Power Systems Research >Experimental validation of ultra-shortened 3D finite element electromagnetic modeling of three-core armored cables at power frequency
【24h】

Experimental validation of ultra-shortened 3D finite element electromagnetic modeling of three-core armored cables at power frequency

机译:Experimental validation of ultra-shortened 3D finite element electromagnetic modeling of three-core armored cables at power frequency

获取原文
获取原文并翻译 | 示例
           

摘要

Due to recent advances, the numerical analysis of submarine three-core armored cables can nowadays be developed through the finite element method (FEM) in a small slice of the cable. This strongly reduces the computational burden and simulation time. However, the performance of this ultra-shortened 3D-FEM model is still to be fully assessed with experimental measurements. This paper focuses on this validation for an extensive variety of situations through the experimental measurements available in the specialized literature for up to 10 actual cables. In particular, it deals not only with relevant calculations at power frequency, like the series resistance and inductive reactance or the induced sheath current, but also with other aspects never analyzed before through 3D-FEM simulations, such as the zero sequence impedance, the magnetic field distribution around the power cable, as well as side effects due to the nonlinear properties of the armor wires. All this considering different armoring and sheath bonding configurations. Results show a very good agreement between measured and computed values, presenting the ultra-shortened 3D-FEM model as a suitable tool for the analysis and design of three-core armored cables, and opening the possibility to reduce the need of extensive experimental tests in the design stage of new cables.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号