...
首页> 外文期刊>Optical Engineering >Deep learning for anisoplanatic optical turbulence mitigation in long-range imaging
【24h】

Deep learning for anisoplanatic optical turbulence mitigation in long-range imaging

机译:Deep learning for anisoplanatic optical turbulence mitigation in long-range imaging

获取原文
获取原文并翻译 | 示例
           

摘要

We present a deep learning approach for restoring images degraded by atmospheric optical turbulence.We consider the case of terrestrial imaging over long ranges with a wide field-of-view. This produces an anisoplanatic imaging scenario where turbulence warping and blurring vary spatially across the image. The proposed turbulence mitigation (TM) method assumes that a sequence of short-exposure images is acquired. A block matching (BM) registration algorithm is applied to the observed frames for dewarping, and the resulting images are averaged. A convolutional neural network (CNN) is then employed to perform spatially adaptive restoration.We refer to the proposed TM algorithm as the block matching and CNN (BM-CNN) method. Training the CNN is accomplished using simulated data from a fast turbulence simulation tool capable of producing a large amount of degraded imagery from declared truth images rapidly. Testing is done using independent data simulated with a different well-validated numerical wave-propagation simulator. Our proposed BM-CNN TM method is evaluated in a number of experiments using quantitative metrics. The quantitative analysis is made possible by virtue of having truth imagery from the simulations. A number of restored images are provided for subjective evaluation. We demonstrate that the BM-CNN TM method outperforms the benchmark methods in the scenarios tested.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号