首页> 外文期刊>Optical fiber technology >Time scrambling and decoy-state quantum key distribution for optical physical layer encryption
【24h】

Time scrambling and decoy-state quantum key distribution for optical physical layer encryption

机译:Time scrambling and decoy-state quantum key distribution for optical physical layer encryption

获取原文
获取原文并翻译 | 示例
           

摘要

We propose an optical physical layer encryption method based on real-time optical signal temporal scrambling and decoy-state quantum key distribution. The real-time optical signal processing is operating with an array of tunable Fabry-Perot cavities by using the updating and synchronization keys. Based on this scheme, an experimental demonstration is given to realize secure communication for optical physical layer in a standard 10 Gbps data transmission with quantum key distribution in real time. An on-line transmitted data over 100 km of a standard single mode fiber is realized with power penalty of as low as 3.45 dB, where the average key generation rate is better than 800 bps. The experimental results indicate that, the proposed encryption scheme of dynamic scrambling with quantum keys exhibits significantly potential for improving the confidentiality of optical physical layer.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号