...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America. >ATP synthesis in an ancient ATP synthase at low driving forces
【24h】

ATP synthesis in an ancient ATP synthase at low driving forces

机译:ATP synthesis in an ancient ATP synthase at low driving forces

获取原文
获取原文并翻译 | 示例
           

摘要

Hyperthermophilic archaea are close to the origin of life. Some hyperthermophilic anaerobic archaea live under strong energy limitation and have to make a living near thermodynamic equilibrium. Obviously, this requires adaptations of the energy-conserving machinery to harness small energy increments. Their ATP synthases often have an unusual motor subunit c that is predicted to prevent ATP synthesis. We have purified and reconstituted into liposomes such an archaeal ATP synthase found in a mesophilic bacterium. The enzyme indeed synthesized ATP at physiological membrane potentials, despite its unusual c subunit, but the minimal driving force for ATP synthesis was found to be even lower than in ATP synthases with usual c subunits. These data not only reveal an intermediate in the transition from ATP hydrolases to ATP synthases but also give a rationale for a bioenergetic adaptation of microbial growth near the thermodynamic equilibrium. ? 2022 National Academy of Sciences. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号