首页> 外文期刊>Cell and Tissue Research >Regeneration in calcareous sponge relies on ‘purse-string’ mechanism and the rearrangements of actin cytoskeleton
【24h】

Regeneration in calcareous sponge relies on ‘purse-string’ mechanism and the rearrangements of actin cytoskeleton

机译:Regeneration in calcareous sponge relies on ‘purse-string’ mechanism and the rearrangements of actin cytoskeleton

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The crucial step in any regeneration process is epithelization, i.e. the restoration of an?epithelium structural and functional integrity. Epithelization requires cytoskeletal rearrangements, primarily of actin filaments and microtubules. Sponges (phylum Porifera) are early branching metazoans with pronounced regenerative abilities. Calcareous sponges have a unique step during regeneration: the?formation of a temporary structure, called?regenerative membrane which initially covers a wound. It forms due to the morphallactic rearrangements of exopinaco- and choanoderm epithelial-like layers. The current study quantitatively evaluates morphological changes and characterises underlying actin cytoskeleton rearrangements during regenerative membrane formation in asconoid calcareous sponge Leucosolenia variabilis through a combination of time-lapse imaging, immunocytochemistry, and confocal laser scanning microscopy. Regenerative membrane formation has non-linear stochastic dynamics with numerous fluctuations. The pinacocytes at the leading edge of regenerative membrane form a contractile actomyosin cable. Regenerative membrane formation either depends on its contraction or being coordinated through it. The cell morphology changes significantly during regenerative membrane formation. Exopinacocytes flatten, their area increases, while circularity decreases. Choanocytes transdifferentiate into endopinacocytes, losing microvillar collar and flagellum. Their area increases and circularity decreases. Subsequent redifferentiation of endopinacocytes into choanocytes is accompanied by inverse changes in cell morphology. All transformations rely on actin filament rearrangements similar to those characteristic of bilaterian animals. Altogether, we provide here a qualitative and quantitative description of cell transformations during reparative epithelial morphogenesis in a calcareous sponge.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号