首页> 外文期刊>Computers & geosciences >Direct computation of critical plume quantities required for initial assessment of contaminated sites
【24h】

Direct computation of critical plume quantities required for initial assessment of contaminated sites

机译:Direct computation of critical plume quantities required for initial assessment of contaminated sites

获取原文
获取原文并翻译 | 示例
           

摘要

? 2023 Elsevier LtdEstimates of plume extremes such as maximum plume width (Wmax) and its location (Xwmax), maximum plume area (Amax), and maximum plume length (Lmax), which are vital indicators of any site assessment work, mostly requires the use of rather complicated numerical approaches and a large number of site information. This paper focuses on simpler (semi)analytical quantification of Wmax and Xwmax, and their characterization with respect to source geometry (source width Sw and source thickness St) for estimating Amax. A direct computation of Wmax and Xwmax rather becomes a multi-dimensional nonlinear system problem for which only a few iterative methods are available. The challenge magnifies further as limited information on Wmax and Xwmax are available for obtaining an initial guess of the solution. Solving over 1000 synthetic problems, this work finds the Newton–Krylov method as the most suitable nonlinear system solver. Among the most important were the limiting results such as Lmax/8 ?Xwmax?Lmax/8 and 1×Sw?Wmax?1.4×Sw. These limiting results simplify the finding of initial guesses for Wmax and Xwmax. Further characterization of Wmax and Xwmax with Lmax, St, and Sw provided an empirical relation between plume and source areas, in addition to an approximation of Amax. A field site data illustrate the potential applications of the methods developed in this work.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号