...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Distance-preserving manifold denoising for data-driven mechanics
【24h】

Distance-preserving manifold denoising for data-driven mechanics

机译:Distance-preserving manifold denoising for data-driven mechanics

获取原文
获取原文并翻译 | 示例
           

摘要

? 2022 Elsevier B.V.This article introduces an isometric manifold embedding data-driven paradigm designed to enable model-free simulations with noisy data sampled from a constitutive manifold. The proposed data-driven approach iterates between a global optimization problem that seeks admissible solutions for the balance principle and a local optimization problem that finds the closest point projection of the Euclidean space that isometrically embeds a nonlinear constitutive manifold. To de-noise the database, a geometric autoencoder is introduced such that the encoder first learns to create an approximated embedding that maps the underlying low-dimensional structure of the high-dimensional constitutive manifold onto a flattened manifold with less curvature. We then obtain the noise-free constitutive responses by projecting data onto a denoised latent space that is completely flat by assuming that the noise and the underlying constitutive signal are orthogonal to each other. Consequently, a projection from the conservative manifold onto this de-noised constitutive latent space enables us to complete the local optimization step of the data-driven paradigm. Finally, to decode the data expressed in the latent space without reintroducing noise, we impose a set of isometry constraints while training the autoencoder such that the nonlinear mapping from the latent space to the reconstructed constituent manifold is distance-preserving. Numerical examples are used to both validate the implementation and demonstrate the accuracy, robustness, and limitations of the proposed paradigm.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号