首页> 外文期刊>Nanotechnology >Control of electrostatic self-assembly seeding of diamond nanoparticles on carbon nanowalls
【24h】

Control of electrostatic self-assembly seeding of diamond nanoparticles on carbon nanowalls

机译:Control of electrostatic self-assembly seeding of diamond nanoparticles on carbon nanowalls

获取原文
获取原文并翻译 | 示例
           

摘要

Seeding of diamond nanoparticles on vertically-aligned multi-layer graphene, the so-called carbon nanowalls (CNWs), is studied by using deionized water, ethylene glycol, ethanol, and formamide as dispersion mediums. Detonation nanodiamond particles show the smallest mean size and size distribution with a high positive zeta potential when dispersed in ethanol. The contact angle of ethanol on CNWs is almost zero degree, confirming highly wetting behaviour. The diamond nanoparticles dispersed in ethanol are distributed the most uniformly with minimal aggregation on CNWs as opposed to those dispersed in other liquids. The resulting diamond nanoparticle-seeded CNWs, followed by short-term growth in microwave plasma chemical vapor deposition, show a marked decrease in field emission turn-on field down to 1.3 V mu m(-1) together with a large increase in current density, compared to bare CNWs without diamond seeding. The results provide a way to control the density, size, and uniformity (spacing) of diamond nanoparticles on CNWs and should be applied to fabricate hybrid materials and devices using nanodiamond and nanocarbons.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号