...
首页> 外文期刊>Bulletin of earthquake engineering >A discrete-cracking numerical model for the in-plane behavior of FRCM strengthened masonry panels
【24h】

A discrete-cracking numerical model for the in-plane behavior of FRCM strengthened masonry panels

机译:A discrete-cracking numerical model for the in-plane behavior of FRCM strengthened masonry panels

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the structural behavior of masonry panels strengthened with a system made up of composite fiber grids embedded in a cementitious matrix (FRCM) is presented. The non-linear behavior of the unreinforced and reinforced panels is numerically simulated by means of a simplified micro-modelling approach. This approach concentrates all the non-linearities and failures in the joints and in potential crack surfaces within the bricks, placed vertically in the middle of each brick. The FRCM strengthening system is discretized by a continuous bi-directional fiber grid constituted by trusses embedded into a cementitious matrix. A calibrated bond-slip relationship is applied between the fibers and the mortar matrix assuming an idealized bilinear law. The typical experimental load-displacement curve for a FRCM strengthened panel shows three principal phases that correspond to different failure mechanisms: masonry cracking, mortar matrix cracking and ultimate failure of the panel. The non-linear numerical analyses show a good agreement with experimental results and the modeling approach is found to be adequate to reproduce the described experimental behavior. The results of a parametric study on both the material and the geometrical properties of the FRCM system are also presented.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号