...
首页> 外文期刊>Environmental Science & Technology: ES&T >Metal speciation dynamics and bioavailability: inert and labile complexes
【24h】

Metal speciation dynamics and bioavailability: inert and labile complexes

机译:Metal speciation dynamics and bioavailability: inert and labile complexes

获取原文
获取原文并翻译 | 示例
           

摘要

The free-ion activity model for the biouptake of metals from complex media is limited to cases where mass transfer is not flux-determining. This paper considers the simultaneous effects of bioconversion kinetics and metal transport in the mediumcoupled with metal complex dissociation kinetics. For the two kinetically limiting situations of inert and fully labile complexes, the bioavailabilities of bioinactive metal complexes are analyzed under conditions where (i) the actual biouptake follows aMichaelis-Menten type of steady-state flux and (ii) the supply of free metal is governed by diffusion of free metal or coupled diffusion of the different labile metal species. The resulting steadystate fluxes are given in terms of two fundamentalquantities, i.e., the relative bioaffinity parameter (a) and the ratio between the limiting uptake flux and the limiting transport flux (b). For labile complexes, these variables are differentiated by a complexation parameter defined by the ratio betweenthe free metal ion activity and the total labile metal activity. Limits of the uptake flux for extreme values of the bioaffinity parameter a and the limiting flux ratio b are easily derived from the general flux expression. The analysis precisely showsunder what conditions labile complex species contribute to the biouptake process or, equivalently, under what conditions the free-ion activity model is not obeyed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号