...
首页> 外文期刊>Metabolomics: Official journal of the Metabolomic Society >Fusion of the H-1 NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome
【24h】

Fusion of the H-1 NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome

机译:Fusion of the H-1 NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome

获取原文
获取原文并翻译 | 示例
           

摘要

Chronic obstructive pulmonary disease, COPD, affects the condition of the entire human organism and causes multiple comorbidities. Pathological lung changes lead to quantitative changes in the composition of the metabolites in different body fluids. The obstructive sleep apnea syndrome, OSAS, occurs in conjunction with chronic obstructive pulmonary disease in about 10-20 of individuals who have COPD. Both conditions share the same comorbidities and this makes differentiating them difficult. The aim of this study was to investigate whether it is possible to diagnose a patient with either COPD or the OSA syndrome using a set of selected metabolites and to determine whether the metabolites that are present in one type of biofluid (serum, exhaled breath condensate or urine) or whether a combination of metabolites that are present in two biofluids or whether a set of metabolites that are present in all three biofluids are necessary to correctly diagnose a patient. A quantitative analysis of the metabolites in all three biofluid samples was performed using H-1 NMR spectroscopy. A multivariate bootstrap approach that combines partial least squares regression with the variable importance in projection score (VIP-score) and selectivity ratio (SR) was adopted in order to construct discriminant diagnostic models for the groups of individuals with COPD and OSAS. A comparison study of all of the discriminant models that were constructed and validated showed that the discriminant partial least squares model using only ten urine metabolites (selected with the SR approach) has a specificity of 100 and a sensitivity of 86.67 . This model (AUC(test) = 0.95) presented the best prediction performance. The main conclusion of this study is that urine metabolites, among the others, present the highest probability for correctly identifying patents with COPD and the lowest probability for an incorrect identification of the OSA syndrome as developed COPD. Another important conclusion is that the changes in the metabolite levels of exhaled breath condensates do not appear to be specific enough to differentiate between patients with COPD and OSAS.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号