...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >A Miniature 2 mW 4 bit 1.2 GS/s Delay-Line-Based ADC in 65 nm CMOS
【24h】

A Miniature 2 mW 4 bit 1.2 GS/s Delay-Line-Based ADC in 65 nm CMOS

机译:A Miniature 2 mW 4 bit 1.2 GS/s Delay-Line-Based ADC in 65 nm CMOS

获取原文
获取原文并翻译 | 示例
           

摘要

A delay-line-based analog-to-digital converter for high-speed applications is introduced. The ADC converts the sampled input voltage to a delay that controls the propagation velocity of a digital pulse. The output digital code is generated based on the propagation length of the pulse in a fixed time window. The effects of quantization noise, jitter, and mismatch are discussed. We show that because of the averaging mechanism of the delay-line, this structure is more power efficient in the presence of noise and mismatch in deep sub-micron CMOS. To show the feasibility of this approach, a 4 bit 1.2 GS/s ADC is designed and fabricated in 65 nm CMOS in an active area of 110 $ muhbox{m}times $105 $ muhbox{m}$. The measured INL and DNL of the ADC are below 0.8 bits and 0.5 bits and it achieves an SNDR of 20.4 dB at Nyquist rate. This delay-line-based ADC consumes 2 mW of power from a 1.2 V supply resulting in 196 fJ/conversion step without using any calibration or post-processing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号