...
首页> 外文期刊>Asian Journal of Control: Affiliated with ACPA, the Asian Control Professors' Association >DEADLOCK AVOIDANCE FOR FLEXIBLE MANUFACTURING SYSTEMS WITH CHOICES BASED ON DIGRAPH CIRCUIT ANALYSIS
【24h】

DEADLOCK AVOIDANCE FOR FLEXIBLE MANUFACTURING SYSTEMS WITH CHOICES BASED ON DIGRAPH CIRCUIT ANALYSIS

机译:DEADLOCK AVOIDANCE FOR FLEXIBLE MANUFACTURING SYSTEMS WITH CHOICES BASED ON DIGRAPH CIRCUIT ANALYSIS

获取原文
获取原文并翻译 | 示例
           

摘要

Due to existence of concurrent part flows and resource sharing in modern automated flexible manufacturing systems (FMS), deadlock is a common problem and its occurrence causes loss of productivity. When a manufacturing system is modeled by a digraph, existence of circuits in such a graph is a necessary condition for deadlock. Our previous work further showed that the knot and order of a circuit is closely related to impending deadlocks - a type of deadlock that is more difficult to detect. In this paper, we extend our previous work on deadlock avoidance for flexible manufacturing systems to allow choices in process flows (a.k.a., flexible part routing). Due to introduction of choices, part flow dynamics become more sophisticated and our previous results are no longer valid. A systematic circuit analysis is performed in this paper. New concepts such as broken circuit, basic circuit, choice circuit and supremal circuit are introduced to reduce significantly the number of circuits thus improving efficiency of our approach. The extended method is highly permissive with the adjusted effective free space calculation to capture more necessary parts flow dynamics, especially when multiple knots exist in the digraph model. The online policy runs in polynomial time once the set of basic circuits of the digraph is computed offline. Simulation results on selected examples are given.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号