首页> 外文期刊>Advanced energy materials >Optical Analysis of Oxygen Self-Diffusion in Ultrathin CeO_2 Layers at Low Temperatures
【24h】

Optical Analysis of Oxygen Self-Diffusion in Ultrathin CeO_2 Layers at Low Temperatures

机译:Optical Analysis of Oxygen Self-Diffusion in Ultrathin CeO_2 Layers at Low Temperatures

获取原文
获取原文并翻译 | 示例
           

摘要

An optical in situ strategy for the analysis of oxygen diffusion in ultrathin ceria layers with a thickness of 2-10 nm at temperatures between 50 and 200 degrees C is presented, which allows for the determination of diffusion coefficients. This method is based on the sensitivity of the photoluminescence (PL) intensity of InGaN nanowires to adsorbed oxygen. The oxygen diffusion through an ultrathin CeO2 coating deposited on the InGaN nanowires is monitored by analyzing the transient PL behavior of the InGaN nanowires, which responds to changes of the oxygen concentration in the environment when the corresponding oxygen concentration is established at the CeO2/InGaN interface due to diffusion through the coating. Quantitative evaluation of the oxygen diffusion in CeO2 based on a model considering Langmuir Adsorption and recombination yields a diffusion coefficient D of (2.55 +/- 0.05) x 10(-16) cm(2) s(-1) at a temperature of 100 degrees C. Temperature-dependent measurements reveal an Arrhenius type behavior of D with an activation energy of (0.28 +/- 0.04) eV. In contrast, no oxygen diffusion is detected for an ultrathin layer (5 nm) of Al2O3, which is known as a poor oxygen ion conductor within the analyzed temperature regime.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号