首页> 外文期刊>Solid State Communications >Electron spins in quantum dots for spintronics and quantum computation
【24h】

Electron spins in quantum dots for spintronics and quantum computation

机译:Electron spins in quantum dots for spintronics and quantum computation

获取原文
获取原文并翻译 | 示例
           

摘要

Coherent manipulation, filtering, and measurement of electronic spin in quantum dots and other nanostructures have promising applications in conventional and in quantum information processing and transmission. We present an overview of our theoretical proposal to implement a quantum computer using electron spins in quantum dots as qubits. We discuss all necessary requirements towards a scalable quantum computer including one- and two qubit gates and read in/out tasks. We then present some concepts for promising single quantum dot devices which eventually could be used as building blocks for sophisticated spintronic devices. We show how a single quantum dot can act as an efficient spin filter, Further, in combination with an ESR source, a quantum dot can be used as a single spin memory or as a spin pump. In addition, the sequential tunneling current through a quantum dot in the presence of an ESR field can exhibit a resonance whose line width is deter-mined by the decoherence time T-2 of a single dot-spin. Finally, we consider mobile non-local spin entangled electrons as needed for quantum communication. We propose how to create such EPR pairs by means of Andreev tunneling at a superconductor-normal junction and discuss experimental setups in which spin entanglement may be detected via transport measurements. (C) 2001 Elsevier Science Ltd. All rights reserved. References: 63

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号