首页> 外文期刊>Metabolomics : >Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
【24h】

Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies

机译:Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies

获取原文
获取原文并翻译 | 示例
           

摘要

BackgroundUntargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation.MethodsWe investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n=1750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci.ResultsRun day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable.ConclusionMissing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号