首页> 外文期刊>glia >Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS
【24h】

Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS

机译:Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS

获取原文
           

摘要

AbstractTransplantation of glial cells into demyelinating lesions in CNS offers an experimental approach which allows investigation of the complex interactions that occur between CNS glia, Schwann cells, and axons during remyelination and repair. Earlier studies have shown that (1) transplanted astrocytes are able to prevent Schwann cells from participating in CNS remyelination, but that they are only able to do so with the cooperation of cells of the oligodendrocyte lineage, and (2) transplanted mouse oligodendrocytes can remyelinate rat axons provided their rejection is controlled by immunosuppression. On the basis of these observations, we have been able to prevent the Schwann cell remyelination that normally follows ethidium bromide demyelination in the rat spinal cord by co‐transplanting isogeneic astrocytes with a potentially rejectable population of mouse oligodendrocyte lineage cells. Since male mouse cells were used it was possible to demonstrate their presence in immunosuppressed recipients using a mouse Y‐chromosome probe by in situ hydridisation. When myelinating mouse cells were rejected by removal of immunosuppression, the demyelinated axons were remyelinated by host oligodendrocytes rather than Schwann cells, whose entry was prevented by the persistence of the transplanted isogeneic astrocytes. The oligodendrocyte remyelination was extensive and rapid, indicating that the inflammation associated with cell rejection did not impede repair. If this host oligodendrocyte remyelination was prevented by local X‐irradiation, the lesion consisted of demyelinated axons surrounded by processes from the transplanted astrocytes. By this approach, it was possible to create an environment which resembled the chronic plaques of multiple sclerosis. Thus, these experiments demonstrate that in appropriate circumstances the temporary presence of a population of glial cells can alter the outcome of damage to the CNS. © 1995 Wiley‐L

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号